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Figure 1: Augmented reality glasses pose privacy risks for co-located individuals, but today, their use in public spaces is governed
solely by the wearer. Our work explores how to facilitate multi-user negotiations of AR sensing capabilities, formulating this
process as an optimization approach to maintain core AR functionality while achieving a balance, or Equilibrium, with privacy.

Abstract

As augmented reality (AR) glasses become more widely used in
public settings, a key challenge is meeting the privacy needs of mul-
tiple AR users and bystanders in a fine-grained manner. To enable
this, we present a conceptual framework for Privacy Equilibrium—
balancing user experience (UX) and privacy between all individuals
in a shared space. The framework applies constrained optimization
to compute AR sensing policies that grant or restrict permissions
to maximize UX while minimizing privacy risks (e.g., capturing
bystanders or sensitive environmental data). We instantiate this
framework in a simulation and analysis toolkit to holistically evalu-
ate different optimization strategies and visualize tradeoffs between
UX and privacy. Through application scenarios, we demonstrate the
flexibility of our optimization approach to minimize these tradeoffs
across conflicting user needs and privacy preferences. Walkthrough
evaluations with AR and security & privacy researchers highlight
the potential of our framework and toolkit to inform future privacy-
mediating techniques for AR.

CCS Concepts

« Human-centered computing — Mixed / augmented reality;
« Security and privacy — Usability in security and privacy.
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1 Introduction

Consider a person with vision impairments navigating a hospital
with AR smartglasses that provide scene descriptions and assist with
wayfinding [8, 19]. As they walk, their AR glasses narrate ongoing
events, such as family members visiting patients and doctors running
to their next appointments, some of whom are using AR themselves.
In this dynamic and sensitive context, how, if at all, should the AR
system adapt to protect the privacy of others around? Should it reroute
the user to avoid bystanders? Could it describe the scene with less
specificity, or would that hinder the user’s ability to navigate safely?
And, how can the user safeguard their own privacy while navigating
among other AR users?

As always-on AR devices become more common in everyday
settings, scenarios like these will increasingly arise, where sens-
ing capabilities essential for AR functionality require tradeoffs in
privacy for users in a shared space. Studies with early adopters
of AR technologies highlight concerns with AR systems’ potential
to infer their identity, health conditions, behavioral patterns, or
sensitive details about their surroundings [1, 12, 17] - all of which
are risks that bystanders also face due to how AR devices capture
and process user input and the environment [13, 16, 30]. To enable
both AR users and non-users to meet their privacy needs in shared
spaces, the HCI and security & privacy (S&P) communities envi-
sion access control techniques that regulate the use of AR sensing
capabilities to minimize the capture and exposure of sensitive data.
Proposals range from world-driven broadcasting of sensing policies
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that apply to all users in a space [39], to user-driven specification
of permissions to follow contextual rules [21, 24, 38] or to achieve
acceptable tradeoffs between privacy and functionality [2].

However, we identify two key shortcomings in this landscape
of privacy-mediating techniques for AR. First, sensing policies are
governed by a single entity—either individual users or space owners—
leaving other people in the environment subject to this entity’s
goals and decisions. Our motivating scenario demonstrates one
such tension: the use of visual assistive technologies poses privacy
risks for bystanders, yet any hospital-wide restrictions on environ-
mental sensing could threaten user safety. This leads to the second
challenge: existing techniques for controlling sensing access can
incur different tradeoffs between AR user experience and privacy,
but are rarely assessed comparatively, limiting our understanding
of which approaches best reconcile competing user needs.

Developing more robust privacy-mediating techniques for AR
requires (1) accounting for the diverse, and sometimes conflicting,
needs of multiple individuals in shared, dynamic environments,
and (2) analyzing the tradeoffs of different approaches in relation
to each other to identify which of them best meet the collective UX
and privacy needs of users. Our work offers two related contribu-
tions. First, we introduce a conceptual framework for balancing
user experience and privacy needs among multiple AR users
and bystanders through facilitating system-driven negotia-
tions of sensing capabilities. The framework applies constrained
optimization to compute AR sensing policies, granting access to
application-critical sensing requirements while satisfying the pri-
vacy preferences of co-located individuals—a state we refer to as
Privacy Equilibrium. Second, we instantiate the framework in a
simulation and analysis toolkit designed to enable AR and S&P
researchers to holistically explore privacy-mediating techniques for
future usage scenarios. The toolkit supports modeling multi-user
interactions and sensing negotiations based on our optimization ap-
proach, and comparing tradeoffs between UX and privacy through
a visualization dashboard.

To assess the effectiveness of our optimization approach for bal-
ancing diverse user needs, we first conducted an application-driven
evaluation [27], using our toolkit to compute and analyze sens-
ing negotiation strategies for our motivating hospital scenario and
multi-user interactions in an office setting. To further validate the
framework dimensions and their instantiation within the toolkit,
we conducted walkthrough evaluations with 8 researchers working
at the intersection of AR and S&P. They found our optimization
approach offered greater flexibility than prior work, reaching ac-
ceptable compromises among competing user goals and giving all
users a say in the negotiation. Informed by discussions with these
researchers, we discuss improvements to our framework to capture
user-aligned perceptions of privacy and future work to bridge the
gap to implementing such AR privacy-mediating techniques.

2 Background & Related Work

In this section, we review prior work on privacy concerns arising
from the use of AR in public, multi-user settings, along with privacy-
mediating techniques that aim to mitigate these risks by adjusting
AR sensing capabilities across contexts.
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2.1 Privacy Concerns with AR Usage in Shared
Physical Settings

Novel AR sensing capabilities that enable natural input techniques
(e.g., gesture and speech recognition) and context-aware interac-
tions with users’ environments (e.g., spatial mapping, object de-
tection) can raise a variety of privacy concerns [12, 37]. Several
recent studies have investigated how early adopters perceive these
risks [1, 3, 17], with common concerns around inference of physio-
logical and biometric traits, identity, personal characteristics (e.g.,
gender, race), mental state, and environmental cues that may reveal
location or activity patterns.

Because AR sensing techniques are designed to perceive and
augment users’ surrounding environments, these risks can extend
to others who are co-located in the space. Surveys and user studies
with potential bystanders of AR highlight two key reasons that
these risks could be exacerbated [4, 10, 13, 16, 30]. First, bystanders
are often unaware of passive sensing and lack meaningful mech-
anisms to provide consent or exert control over their data, which
is likely to worsen as AR glasses become more lightweight and
subtle [13]. Second, when bystanders are aware, their discomfort
increases due to uncertainty about how AR applications use their
data, especially when it is retained for later use (e.g., stored spatial
maps) or processed by third parties (e.g., for training or improving
tracking algorithms).

While AR users often wish to respect bystander privacy, they
currently have limited means to notify bystanders or obtain their
consent [6]. Their current coping strategies include pausing AR
tasks or relocating to empty spaces to avoid bystanders, requiring
significant manual effort and limiting the practicality of AR use [17].

2.2 Privacy-Mediating Techniques for AR Users
and Bystanders

As AR devices are increasingly used in public settings, the HCI and
security & privacy communities are actively investigating technical
approaches to mitigate associated privacy risks. Prior work devel-
oped a broad range of privacy-enhancing technologies (PETs) such
as obfuscation techniques to limit AR apps’ access to raw sensor
streams [11, 20], differential privacy to obscure motion data [29],
and interaction techniques that disclose less detail to bystanders
and distributed collaborators [33], such as silent speech [45]. Ra-
jaram et al. establish a design space of such techniques for adapting

AR interfaces to meet users’ privacy needs while maintaining core

AR functionality [34]. Prior work also contributes design and devel-

opment tools to guide the implementation of PETs for AR [25, 35].

In particular, our work builds on AR access control frame-
works that operate at the application permissions level. These
frameworks aim to prevent privacy risks caused by the capture and
exposure of environmental data in shared spaces by restricting

AR applications’ access to sensing capabilities in privacy-sensitive

contexts. Examples include:

(1) World-Driven Access Control [39] which enforces sensing
policies for all users in a space (e.g., universally restricting video
capture near sensitive areas such as bathrooms);

(2) User-driven permission frameworks, which allow users to
dynamically configure AR applications’ sensing access based
on contextual rules [21, 24, 38] (e.g., permitting object detection
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only in certain locations or only when app features requiring
this capability are activated), or to achieve desired levels of pri-
vacy—-functionality tradeoffs [2] (e.g., allowing sound detection
but not speech recognition);

(3) Peer-driven permission frameworks to mitigate interper-
sonal privacy concerns in multi-user AR scenarios [10, 26, 32],
defining collaborators’ access to view, modify, and share sensi-
tive physical or virtual content [9, 36, 40, 42, 46].

However, a key limitation of these frameworks is their inflexi-
bility in accommodating multiple individuals’ varying AR usage
and privacy needs, as data access is determined by a single entity:
individual users in user- and peer-driven frameworks, or space man-
agers in World-Driven Access Control. While a single governing
entity may be desirable in privacy-sensitive contexts, some situa-
tions require a more nuanced consideration of individuals’ needs
(e.g., our motivating scenario, where a low vision user’s safety
should take precedence when using assistive technologies, even if
bystander privacy is affected).

To meet the UX and privacy needs of multiple individuals in
shared spaces, we re-envision AR access control as a negotiation of
sensing capabilities, leveraging optimization to dynamically grant
or restrict permissions rather than a static rule-based approach.

3 Research Approach

Our research process started with drafting an initial Privacy Equi-
librium framework that characterizes multi-user AR sensing nego-
tiations (Sec. 4) through two key dimensions: the scope of users
involved and optimization strategies that grant sensing permissions
to prioritize different objectives or stakeholders. This framework
not only encompasses the new optimization-based access control
strategy we propose in this work, but can also be used to express
existing approaches from prior work (Sec. 2.2), e.g., World-Driven
Access Control [39].

Then, we developed a toolkit to simulate multi-user AR scenarios
across physical environments and analyze the impact of various
sensing negotiation strategies on users’ UX and privacy (Sec. 5). The
toolkit serves two primary goals. First, it supported our research
process by enabling us to refine and assess the implementation
feasibility of the framework, through formalizing key concepts
as optimization problems. Second, it provides a research & devel-
opment platform for AR and S&P researchers and developers to
holistically explore sensing requirements and compare access con-
trol techniques for future AR usage scenarios. We use simulation
to enable this exploration, drawing on its established role in HCI as
a method for investigating the feasibility and sociotechnical impli-
cations of emerging technologies, particularly when user testing is
constrained by limitations of real-world infrastructure or potential
safety risks [28, 41]. Recent work in the UIST community leveraged
simulation to evaluate UI adaptation techniques across diverse user
preferences [22], model human body motion [18], and assess to
what extent LLM-driven agents can mimic social behavior [31].

We evaluated the expressiveness of the framework and toolkit
in bridging the gap between multiple individuals’ diverse needs in
two steps. First, we conducted experiments around two application
scenarios where AR use poses significant privacy risks, demon-
strating that our optimization approach effectively balances UX
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and privacy across individuals (Sec. 6). Finally, we conducted walk-
through evaluations with S&P experts to inform improvements to
the framework’s instantiation within our toolkit (Sec. 7).

4 Privacy Equilibrium Framework

In this section, we present our conceptual framework for establish-
ing a Privacy Equilibrium—a balance between the user experience
and privacy needs of all AR users and non-users in a space. In
line with existing access control approaches (Sec. 2.2), we consider
how to achieve this balance by adjusting which AR sensing capa-
bilities a given group of users are permitted to use. This poses a
major challenge for dynamic multi-user AR settings, as it requires
bridging the gap between heterogeneous AR devices, AR applica-
tions, and a range of users’ privacy preferences. We show that by
re-envisioning AR access control as a negotiation of sensing
capabilities between multiple individuals and modeling ne-
gotiations via constrained optimization, our framework can
generate sensing policy configurations that flexibly accommodate
varying user requirements.

We start by discussing our Design Goals (Sec. 4.1) and detailing
the process for sensing capability negotiations (Sec. 4.2). Then, we
introduce two dimensions that characterize negotiations: the scope
of participating users (Sec. 4.3) and optimization strategies used
to negotiate permissions across users to achieve UX- and privacy-
oriented objectives (Sec. 4.4). Finally, we explain how we formulated
optimization problems around these dimensions (Sec. 4.5-4.6).

4.1 Design Goals

Inspired by our review of related work, we defined three key design
goals for our framework:

(1) Modeling AR sensing capabilities: We aimed to allow flexi-
ble representations of permission models for future AR glasses
that offer fine-grained control over individual sensing capabili-
ties (e.g., switching from cloud to local processing for speech
recognition, rather than restricting speech input altogether).

(2) Modeling privacy needs of multiple AR users and non-
users: Our second design goal was accounting for the needs
of everyone who could face bystander privacy risks in a given
physical environment, including both AR users and non-users.
In doing so, our work bridges separate research streams on
interpersonal privacy considerations for multi-user AR [32, 40]
and bystanders of AR usage [10, 13].

(3) Modeling tradeoffs between UX & privacy: Finally, despite
Privacy by Design [7] being a core goal in the usable privacy
community, today’s landscape of privacy-preserving techniques
for AR can come at the cost of usability and functionality, and
vice versa [2, 34]. In line with prior work on AR and IoT sys-
tems [2, 14, 49], we aimed to assess the tradeoffs that sensing
restrictions impose on both AR users and bystanders.

4.2 Negotiation of AR Sensing Capabilities

At the core of our framework is a process we refer to as a negoti-
ation of AR sensing capabilities, which determines how to
adjust an application’s sensing permissions to align with the
interpersonal privacy preferences of co-located individuals.
This requires two types of input:
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Negotiation of AR Sensing Capabilities

Interpersonal Privacy Profiles

AR Sensing
Profile

AR Sensing
4? Profile

Allowed
sensing capabilities

Allowed

Negotiation sensing capabilities

(to establish a
Privacy Equilibrium)

Figure 2: Negotiation of Sensing Capabilities

(1) An AR Sensing Profile, which specifies the set of sensing ca-
pabilities an AR application requires to achieve the optimal user
experience. As with traditional permission models, developers
would specify these requirements, and users can grant or revoke
access based on their individual needs and privacy preferences.
For example, a Navigation app may just need location access to
provide directions, but also require live spatial mapping to help
a low-vision user navigate around obstacles in real time.

(2) An Interpersonal Privacy Profile, which specifies the set
of sensing capabilities each user is comfortable with others
around them utilizing. For example, someone may object to
others performing spatial mapping in their home. Our current
framework assumes users will define these profiles manually
or choose a predefined profile aligned with a privacy persona,
such as a highly risk-averse Privacy Fundamentalist or a Privacy
Unconcerned individual [15]. We also envision mechanisms for
AR non-users to express their privacy preferences (e.g., a QR
code-linked survey upon entering a space).

Figure 2 illustrates a sensing negotiation process for two AR
users, where each user’s AR Sensing Profile is adjusted to align
with other co-located individuals’ Interpersonal Privacy Profiles, re-
sulting in an allowed set of sensing capabilities for each user. While
out of scope for our framework, we envision that AR interfaces
could adapt their interaction techniques in response to negotiations
to preserve functionality as much as possible [34]. For example, if
speech recognition were restricted, an AR interface could rely on
alternative input methods such as typing or gestures [33].

While Fig. 2 shows a simple case, we can facilitate negotiations to
produce many alternative solutions, with outcomes varying based
on the users involved and how their conflicting preferences are
resolved. For example, we could prioritize granting permissions for
AR users with accessibility or safety needs, or restricting permis-
sions in sensitive physical contexts.

To capture these aspects, our framework characterizes negotia-
tions through two dimensions: Equilibrium Scope—who participates
in the negotiation process—and Optimization Strategies—approaches
to guide negotiations toward a particular Equilibrium point, each
representing a distinct tradeoff between UX and privacy for users
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within the scope. Our framework also includes metrics for approx-
imating these tradeoffs, allowing comparison of solution points
along a curve, known as the Pareto Frontier (Fig. 5), to identify
optimal solutions. We describe each concept in turn.

4.3 Equilibrium Scope: Who Is Involved

First, our framework defines the Equilibrium Scope dimension,
which determines which users are involved in the negotiation pro-
cess (Fig. 3). Based on our literature survey, we consider three
approaches:

o Space-Wide: All individuals in the physical environment-defined
by natural boundaries like walls or doors—participate in the ne-
gotiation. This results in a sensing policy that grants or restricts
specific AR sensing capabilities across the entire space or within
spatial subsets, such as rooms or hallways. This approach is
ideal for capturing space-based social norms around privacy (e.g.,
adopting a more restrictive policy in a privacy-sensitive hospital).

e Zone-Wide: Each person is allocated a portion of the physical
space (a zone), and negotiations occur between users in overlap-
ping zones. These zones could be user-anchored, traveling with
users as they move within the space, or space-anchored (e.g., a
fixed sensing zone around one’s office desk). The latter approach
is useful when marking temporary personal areas (e.g., when
working in a public cafe).

o Peer-to-Peer: Negotiations take place between pairs of individ-
uals. When based solely on proximity, Peer-to-Peer produces
similar sensing policies to Zone-Wide in two-user scenarios, but
enables more granular policies for chained configurations of three
or more users. For example, in Zone-Wide, a privacy-conscious
user may influence all users in overlapping zones, whereas in
Peer-to-Peer, their preferences primarily affect the user within
closest proximity. While not currently modeled in our optimiza-
tion formulation (Sec. 4.6), Peer-to-Peer policies could also ac-
count for user roles (e.g., applying more permissive rules for
friends and family, and stricter ones for strangers).

Respective examples of each from the literature include World-
Driven Access Control [39] for Space-Wide, zone-based sharing
for collaborative AR experiences [40], and peer-to-peer content
viewing policies for public digital displays [43].

Equilibrium Scope

&

& &

N L=t ey N ]
B B
Space-Wide Zone-Wide Peer-to-Peer
larger scope smaller scope

Figure 3: Equilibrium Scope
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Equilibrium Optimization Strategies

& : &

e n | oo I

// :

N | 2

2 8 &8
Privacy-First

Ownership-Based

Interaction-First

more restrictive less restrictive

static sensing policies dynamic sensing policies

Figure 4: Equilibrium Optimization Strategies

4.4 Equilibrium Optimization Strategies:
Promoting Specific Objectives

While our framework’s first dimension concerns the Equilibrium
scope, the second concerns the Equilibrium point: whether the goal
is for all users to make similar compromises in UX and privacy,
or to reach a more nuanced balance point that prioritizes specific
values or stakeholders. For example, in sensitive contexts like hos-
pitals, more restrictive sensing policies may be favored to safeguard
visitors® privacy. Other scenarios may warrant prioritizing UX,
especially when users have a critical need to use AR (e.g., for acces-
sibility) or where appropriate privacy measures are in place (e.g.,
an experimental setting with informed participant consent).

We define three strategies for optimizing sensing negotiations to
promote these different goals (Fig. 4). The Ownership-Based strat-
egy reflects access control models from prior work, where a single
entity determines sensing policies (Sec. 2.2). We propose Privacy-
First and Interaction-First optimization as new strategies to bridge
the gap between multiple users’ requirements.

o Ownership-Based: This strategy’s objective is adhering to a
sensing policy defined by a designated space owner, who sets the
privacy and social norms for a physical space and determines the
AR sensing capabilities permitted within it. For example, policies
could be dictated by a coffee shop manager or teacher under the
Space-Wide scope, or by individual users who “own” portions of
the surrounding space using the Zone-Wide scope.

e Privacy-First: Negotiations are optimized to uphold individuals’
Interpersonal Privacy Profiles, resulting in a more restrictive set
of allowed AR sensing capabilities. In other words, the objective
is to maximize overall user satisfaction in terms of privacy.

o Interaction-First: This strategy grants access to sensing capa-
bilities in a more permissive manner, to prioritize the user experi-
ence of AR users based on their AR Sensing Profiles. Conversely
to Privacy-First, the optimization objective for Interaction-First is
maximizing overall user satisfaction in terms of UX.

We note that the Privacy-First and Interaction-First objectives
guide negotiations toward two extremes—prioritizing either the
protection of interpersonal privacy or the granting of AR sensing
capabilities. To achieve Equilibrium points that reflect more bal-
anced tradeoffs, we can optimize for one objective while treating
the other as a constraint, which we will demonstrate in Section 4.6.
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This approach requires computational metrics to assess tradeoffs
between objectives, which we describe next.

4.5 Equilibrium Scores: Assessing Tradeoffs

Finally, our framework introduces two Equilibrium Scores, which
quantify to what extent users’ AR Sensing and Interpersonal Privacy
Profiles are upheld before and after sensing negotiations (Fig. 5):

(1) Permission Satisfaction Score: The weighted sum of each
user’s required AR sensing capabilities (as specified in their AR
Sensing Profiles) that they are allowed to use.

(2) Privacy Satisfaction Score: The weighted sum of each user’s
privacy preferences (as specified in their Interpersonal Privacy
Profiles) that other users are in compliance with.

The Permission Satisfaction Score serves as a proxy for AR user
experience, while the Privacy Satisfaction Score approximates how
well bystanders’ privacy expectations are met. Higher scores are
favorable for both.

These scores play two key roles in our framework. First, they
enable computing sensing policies that guarantee all users’ indi-
vidual UX or privacy requirements—expressed as per-user score
thresholds—are upheld in Interaction-First and Privacy-First nego-
tiations, respectively. For example, in the Privacy-First strategy,
we can explore alternative combinations of sensing restrictions
and evaluate their impact on each user’s Permission and Privacy
Satisfaction Scores; optimal solutions satisfy each user’s Privacy Sat-
isfaction threshold while minimizing reductions to the Permission
Satisfaction Score (blue points along the Pareto Frontier in Fig. 5).
We formulate these optimization problems in the next section.

Second, by strategically setting per-user thresholds, the scores
enable expressing new kinds of optimization objectives implicitly.
For example, in our earlier scenario, we could prioritize accessibility
by assigning a high Permission Satisfaction threshold to the visually-
impaired user relying on AR for safe navigation.

Equilibrium Scores to Assess Tradeoffs

R e Max Privacy Satisfaction
(proxy for meeting bystanders’
privacy expectations)

_ Balancing both objectives
via constrained optimization

Privacy Satisfaction

- - Max Permission Satisfaction
(proxy for AR user experience)

2

Permission Satisfaction

Figure 5: Equilibrium Scores to Assess Tradeoffs. We use
the Permission and Privacy Satisfaction Scores to explore
Equilibrium points along the Pareto Frontier. Each point rep-
resents a distinct negotiation strategy, where varying score
thresholds lead to different UX-privacy tradeoffs. Blue cir-
cles highlight non-dominated points, which are optimal in
the sense that no other point achieves better performance
on the Interaction-First or Privacy-First objective without
reducing performance on the other.
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4.6 Optimization Algorithms

We have now established the core components of our framework:
profiles to define users’ requirements for AR Sensing and Interper-
sonal Privacy (Sec. 4.2), the Equilibrium Scope and Optimization
Strategy dimensions (Sec. 4.3-4.4), and Equilibrium Scores (Sec. 4.5).
Next, we describe the mathematical formulation and optimization
algorithms that operationalize these concepts to determine a Pri-
vacy Equilibrium.

Permission Satisfaction Score SI.I. =0

Negotiated Sensing AR Sensing

Profile X; Profile s;
< ] 1 l >
T T T
more restrictive 0 1 2 less restrictive
sensing policy  none pre-captured live  sensing policy

Figure 6: AR Sensing Function Range. Sensing configurations
towards the left are more restrictive, while the right tends
to have higher Permission Satisfaction. If an AR Sensing
Profile requests capturing live spatial mapping data, but the
negotiated permission only grants access to pre-captured
data, the Permission Satisfaction Score is 0.

4.6.1 Inputs. A user i’s AR Sensing Profile for sensing function j
can be written as s;; € {0,1,..., N}, where N is the number of pos-
sible configurations. Here, sensing function refers to a specific data
operation (e.g., capturing, computing, or storing data) associated
with an AR sensing capability (e.g., spatial mapping). As Figure 6
shows, if there are N = 3 settings for capturing spatial mapping
data (not using this function, leveraging pre-captured data, or live
data), s;; could take on the corresponding values of {0, 1, 2}. Each
sensing function j has an associated constant weight 0 < w;; < 1,
with a higher value indicating that j is more critical to enabling
user i’s AR functionality. Our implementation uses a set of three
weights to represent an intuitive priority of sensing capabilities:
capabilities that are “Must Have”, “Nice To Have”, or that the AR
app “Can Do Without” are weighted {0.6, 0.3, 0.1} respectively. Ap-
pendix A.2 provides the AR Sensing Profile format as a C# class,
along with an example profile for an Accessible Navigation app.

The Interpersonal Privacy Profile is defined similarly as p;; €
{0,1,...,N}. For example, an AR user may request live spatial
capture (s;; = 2) as a crucial enabler of navigation functionality
(wij = 0.6), while a co-located bystander prefers they use a previ-
ously saved environmental map (p;; = 1). Each user also specifies a
minimum Permission Satisfaction threshold S; and a Privacy Satis-
faction threshold #; that they would like to achieve. Appendix A.3
provides an example Interpersonal Privacy Profile for a Privacy
Fundamentalist persona [15]. Note that we assume each user runs
one AR application, so we use the terms “user” and “application” in-
terchangeably throughout this section. Our framework is extensible
to users running multiple AR applications.

4.6.2 Outputs. Given a set of user profiles as input (where the
user group is determined by the specified Equilibrium Scope), our
optimization algorithm outputs the negotiated configuration x; for
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each sensing function j. The final sensing configuration applied
to each user i is min(s;j, xj) to ensure that an AR application is
not granted more access than the user consents to, even if the
negotiated configuration allows it (e.g., x; permits live eye tracking,
but the Navigation app does not require it).

4.6.3 Equilibrium Scores. Our framework is flexible and can incor-
porate different definitions of Equilibrium Scores (Sec. 4.5). Our
current instantiation defines the Permission Satisfaction Score
Sij as whether the AR app’s requirement for sensing function j is
satisfied or not:

1 min(sij, xj) > sij

1)

Permission Satisfaction Score S;; = .
0 otherwise

As in Figure 6, if the negotiated spatial mapping setting is “pre-
captured” (x; = 1), but the Navigation app desired it to be live
(sij = 2), then according to the second case in Equation 1, S;; = 0.
Similarly, the Privacy Satisfaction Score P;; can be defined as
whether the user’s desired privacy preferences are satisfied or not:

1 xj <pij
0 otherwise

Privacy Satisfaction Score P;; = { (2)
For example, if a bystander prefers AR users to rely on pre-recorded
spatial maps (p;; = 1) to avoid being captured on live maps, and
the negotiated sensing function is also pre-recorded (x; = 1), then
according to the first case in Equation 2, P;; = 1.

4.6.4 Equilibrium Optimization Strategies. With this mathematical
notation in hand, we can now describe the optimization strategies
from Sec. 4.4 more precisely.

The Ownership-Based approach can be written as:

Xj = pi*j (3)
where i* is the space owner in the Space-Wide scope or a specific
user who owns their proxemic zone in the Zone-Wide and Peer-to-
Peer scopes. In other words, the negotiated sensing function is set

to that of the owner’s Interpersonal Privacy Profile.
The Privacy-First optimization problem can be written as:

IT}CQ;X min ZJ: wijSij 4)
subject to Z Pij > Pi, Vi (5)
J
(1), (2)

Xj, Sijs Pij € {0,1,...,N}

The objective in Equation 4 is to maximize the lowest Permission
Satisfaction Score across all users. This score is computed as the
weighted sum of sensing function scores (S;;; Eqn. 1), where each
weight w;; reflects how critical sensing function j is to user i’s
AR app. Intuitively, sensing functions most essential to app capa-
bilities contribute more to the total Permission Satisfaction Score.
We choose this form of the objective function for fairness, so that
no user is “left behind,” ending up with a much worse Permission
Satisfaction Score than other users. The constraint in Equation 5
guarantees every user’s Privacy Satisfaction Score meets their Pri-
vacy Satisfaction threshold, meaning their individual privacy re-
quirements are not violated.
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Figure 7: Cost function for Privacy-First optimization. Start-
ing from a high privacy score on the left, we choose to
loosen the sensing capability with the shallower slope

APermission Satisfaction
1+APrivacy Satisfaction

chooses sensor 2 (dashed green line) to loosen, as it incurs
the smaller tradeoff between Permission Satisfaction and
Privacy Satisfaction.

(max ) In this example, the algorithm

Algorithm for Privacy-First optimization. We model the
Privacy-First strategy as an integer program, a class of NP-complete
problems that are generally inefficient to solve exactly at scale. In
our case, the AR Sensing Profile (Appendix A.2) defines N = 21 sens-
ing functions: 7 sensing capabilities X 3 data operations (capture,
computation, and storage of data). Each function has M = 3 options
(e.g., live, pre-captured, or no data for the capture attribute). Brute-
force enumeration would require exponential time, with MY ~ 10
billion possibilities in the worst case.

Instead, we propose a greedy heuristic algorithm that considers
configurations of allowed sensing capabilities along the Pareto Fron-
tier via an epsilon-constrained approach, maximizing the Interaction-
First objective while treating Privacy-First as a constraint (Eqn. 4-5).
This algorithm is illustrated in Figure 7 and described in pseudo-
code in Appendix A.1. We start with an initial solution that maxi-
mizes all Privacy Satisfaction Scores by adopting the most restrictive
set of sensing capabilities dictated by the involved users’ Interper-
sonal Privacy Profiles. Then, we identify the most critical sensing
capability to “loosen” by placing fewer restrictions on it (e.g., grant-
ing access to live spatial mapping instead of limiting AR apps to
using pre-captured data). Here, we define the most critical capabil-
ity as the one that yields the largest ratio of Permission Satisfaction
Score to Privacy Satisfaction Score before and after loosening, eval-
uated for the user with the lowest score. In other words, we adjust
sensing permissions to maximize gains in Permission Satisfaction
while minimizing losses in Privacy Satisfaction. In the example
shown in Figure 7, the algorithm selects sensor 2 (green line) to
loosen, as it results in a greater increase in Permission Satisfaction
(x-axis) and a smaller decrease in Privacy Satisfaction (y-axis) com-
pared to sensor 1 (orange line). This search proceeds until all users
meet their Permission Satisfaction thresholds or no sensing capa-
bilities can be further loosened while satisfying all users’ Privacy
Satisfaction thresholds.

The Interaction-First problem is similar to Privacy-First, but
instead treats the Permission Satisfaction Score as a constraint and
the Privacy Satisfaction Score as the objective (Appendix A.1).
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5 Privacy Equilibrium Toolkit

In this section, we present an instantiation of our Privacy Equi-
librium framework in an interactive toolkit, consisting of a Unity
simulation engine and a web-based visualization dashboard (Fig. 8).
The toolkit enables simulating interactions between AR users and
non-users across locations and experimenting with different strate-
gies to reach a Privacy Equilibrium through a three-step process:

(1) Establishing the scenario context by defining the physical
environment, user movement patterns, and user profiles
(which reflect the AR application usage and privacy preferences
of all individuals present in the environment);

(2) Configuring the process for negotiating sensing capabili-
ties to reach a Privacy Equilibrium, in terms of users within
the Equilibrium Scope (Sec. 4.3) and objectives to prioritize
through Optimization Strategies (Sec. 4.4);

(3) Assessing to what extent the desired Equilibrium point
was reached, by analyzing tradeoffs in UX and privacy for the
current and prior optimization strategies.

We developed the toolkit with two goals in mind: (1) demon-
strating the implementation feasibility and practical benefits of our
conceptual framework; (2) providing a research platform for AR and
S&P researchers and developers. Developers can use the toolkit to
experiment with sensing requirements at the AR application level,
assessing their impact on privacy with respect to various user needs
and perceptions of privacy risks. As we approach the everyday use
of AR, the toolkit also provides a basis for AR and S&P researchers
to holistically explore and generate requirements for privacy me-
diation in the future AR ecosystem. Further information on the
toolkit can be found at https://www.mi2lab.com/research/privacy-
equilibrium.

5.1 Step 1: Specifying the Context of Use

AR users’ privacy expectations are shaped by their current tasks,
both physical and virtual, and the social norms of the space they
occupy [1, 16, 30]. Therefore, researchers or developers using our
toolkit start by defining their scenario in terms of environments,
user profiles, and interactions between users.

Our Unity simulation engine includes mock physical envi-
ronments represented as 3D floorplans, including a hospital,
classroom, and office (Fig. 8A). We generated these by scanning real-
world spaces in Polycam! and exporting the captures to Unity. The
environments prompt toolkit users to consider contextual factors
when designing negotiation strategies according to our framework
(e.g., the spatial layout and heightened privacy expectations within
a hospital might suggest a Space-Wide, Privacy-First approach).

Our toolkit represents AR users and non-users as avatars
with and without glasses in the scene, each characterized by an
AR Sensing Profile and Interpersonal Privacy Profile. As described
in Section 4.2, the AR Sensing Profile defines the required sensing
capabilities for any AR applications in use (e.g., AR Telepresence,
Accessible Navigation), while the Interpersonal Privacy Profile spec-
ifies capabilities a given user is comfortable with others around
them using, based on a privacy persona [15] (e.g., the Biometric
Data-Concerned user requests restrictions on speech recognition

1Polycam: https://poly.cam/
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Figure 8: Privacy Equilibrium Toolkit Overview. Our toolkit includes a simulation engine implemented in Unity (A), which
supports exploring AR usage behaviors and privacy risks across public environments, such as the office space shown here. Avatars
representing users who leverage different AR applications and have varying privacy needs can be configured and animated to
move around the space. Depending on the Equilibrium Scope, sensing negotiations are triggered when users enter designated
regions (Space-Wide; B) or come into proximity with other people (Zone-Wide, Peer-to-Peer; C). The simulation engine supports
real-time analysis of negotiated sensing capabilities (D) and Equilibrium Scores (E). A web-based dashboard enables post-hoc
analysis of score trends over time (F) and comparison of UX-privacy tradeoffs incurred by different Optimization Strategies,

Average Privacy Satisfaction

#of Adaptations

visualized along a Pareto Curve (G).

and people detection). Users’ profiles and positions in the scene can
be configured via JSON files or created ad hoc during simulations.

Finally, we provide animated motion sequences to simulate
interactions between multiple users within the environment.
For example, Fig. 8A illustrates the red user leaving their office to
get coffee, initiating a negotiation with the green user entering the
elevator and later with the blue user in the kitchen.

Appendix A.4 demonstrates how to configure and define new
user profiles and animation sequences in the simulation engine.

5.2 Step 2: Configuring the Negotiation Process

As animated user avatars move through the environment or enter
each other’s proximity, sensing negotiations are dynamically trig-
gered based on the selected Equilibrium Scope and Optimization
Strategy. Toolkit users can specify these dimensions, along with
related parameters such as score thresholds, via dropdowns and
input fields in the simulation engine UI (Fig. 11).

Equilibrium Scope: To compute when negotiations should
occur and the users involved, we model spatial scopes using Unity’s
collider component. In the Space-Wide approach, large colliders

are mapped to distinct areas of the environment (Fig. 8B), such as
an office’s lobby, kitchen, and lab space. For the Zone-Wide and
Peer-to-Peer scopes, our toolkit anchors cylindrical colliders with
a 4.5 meter radius to each user, approximating the spatial mapping
range of commercially available AR glasses (Fig. 8C). For all three
scopes, negotiations are triggered when people enter and exit the
collision areas. To avoid repeated triggers from overlapping user-
anchored zones, we implemented an algorithm to process related
events concurrently.

Optimization Strategies: Given the user profiles of those within
the Equilibrium Scope, our toolkit computes the negotiated set of
sensing capabilities based on the specified strategy (Ownership-
Based, Privacy-First, or Interaction-First). The outcome of these
negotiations, compared against each user’s ideal AR application
permissions, is visualized through two Uls anchored to their avatar
(Fig. 8D). One Ul displays their AR Sensing Profile, and the other
highlights any sensing restrictions in red. We implemented the
Optimization Strategies in a C# utility according to the algorithms
described in Section 4.6.

To refine the negotiation strategy and more closely approach
their desired Equilibrium point, toolkit users can experiment with
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different thresholds for Permission and Privacy Satisfaction. The
simulation engine UI supports setting these thresholds as values
between 0 and 1, either globally (e.g., guaranteeing a Privacy Satis-
faction Score of 0.9 for all users) or on a per-user basis (e.g., maxi-
mizing the Permission Satisfaction Score for users relying on AR
for accessibility, while applying a lower threshold for less critical
use cases like gaming).

5.3 Step 3: Analyzing UX & Privacy Tradeoffs

Finally, toolkit users can assess to what extent a Privacy Equilibrium
has been reached through two sets of visualization features.

First, to support in-depth analysis of sensing capability nego-
tiations, our Unity simulation engine provides real-time views
of Equilibrium Scores. For each user, the toolkit computes the
Permission and Privacy Satisfaction Scores, along with another
metric called Number of Adaptations: the number of times each
AR application must adjust its functionality to comply with the
negotiated sensing policies throughout a usage session. This score
provides another way to approximate impact on UX, in addition to
Permission Satisfaction. We display these scores displayed on a per-
user basis (Fig. 8E) along with averages, minimums, and maximums
across all users (Fig. 11C).

Second, we developed a web-based dashboard to support
post-hoc analysis of tradeoffs across different negotiation strate-
gies through two types of visualizations:

(1) Timeline Plots show trends in user scores across multi-user in-
teractions (Fig. 8F). For example, in the Space-Wide, Ownership-
Based negotiation shown in Fig. 8B, the red AR User’s Permis-
sion and Privacy Satisfaction are disproportionately impacted
compared to other users, whereas the Zone-Wide approach
leveraging Privacy-First optimization (Fig. 8C) requires all users
to make some compromises.

(2) Pareto Curves visualize the UX-privacy tradeoffs of different
Equilibrium points (Fig. 8G). Each point represents a unique
negotiation strategy (varying Equilibrium Scope or score thresh-
olds), plotted by the average Permission and Privacy Satisfac-
tion Scores across all users. Points on the Pareto Frontier, where
no other strategy outperforms them on both objectives, are
highlighted in blue.

The Unity simulation records timestamped score data in log files,
which toolkit users can upload and manually configure to create
the dashboard visualizations.

6 Application Scenarios

To demonstrate the flexibility of our framework to resolve differ-
ences in multiple AR users’ and bystanders’ AR sensing require-
ments and privacy preferences, we walk through two application
scenarios prototyped using our toolkit [23, 27]. Our goal in study-
ing these scenarios was to understand the AR sensing capabilities
negotiated by our optimization approach and assess how well they
align with intuitive scenario needs.

We focus on two scenarios, set in a hospital and an office, that we
designed to probe complex definitions for Privacy Equilibrium by
highlighting different social norms and people with critical needs to
use AR. In this section, we detail how we configured each scenario
in Unity and systematically simulated negotiations with varying
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Equilibrium Scopes and Optimization Strategies. We compared
UX-privacy tradeoffs using two analysis strategies enabled by our
dashboard: one focused on timeline visualizations to capture high-
level events and trends across users’ scores (Sec. 6.1), and the other
on Pareto Frontier plots that highlight tradeoffs between possible
Equilibrium points (Sec. 6.2).

6.1 Hospital Scenario: Balancing Accessibility
and Privacy

Aligned with our motivating scenario in the Introduction, we first
explored how to prioritize accessibility and safety for a visually-
impaired individual while mitigating privacy concerns inherently
posed by assistive technologies.

Step 1: Specifying the Context of Use: Via the simulation
engine, we designed a hospital environment with interactions be-
tween two people: (1) A low-vision person using an AR Navigation
app (leveraging spatial mapping, people, and object detection) to
find a table in the waiting area (Fig. 9; blue avatar); (2) Another
visitor who is not using AR and is concerned about location-related
data collection-they want to avoid being linked to a specific place
or time (Fig. 9; pink avatar). We animated the Navigation user to
slowly walk past the Location-Concerned bystander and change
paths once their AR device detects a person.

Step 2: Configuring the Negotiation Process: To systemat-
ically explore negotiation strategies enabled by our framework
and their ability to resolve conflicting user needs, we simulated
different combinations of Equilibrium Scopes and Optimization
Strategies. For the Privacy-First and Interaction-First optimization
objectives, we used 4 threshold pairs for Permission and Privacy
Satisfaction which proved to consistently produce distinct Equi-
librium points across different user profiles (see Appendix A.5 for
our threshold selection method). These thresholds were applied
to all users. To maintain the low-vision user’s Navigation func-
tionality, we also included one example of per-user thresholds,
guaranteeing them a Permission Satisfaction Score of at least 0.8
and a Privacy Satisfaction Score of at least 0.7 for the bystander. For
the Ownership-Based strategy, we designed a policy that applies
sensing restrictions aligned with users’ privacy preferences (e.g.,
prohibiting location-related data collection in the waiting area).

Since our scenarios involved negotiations between just two users
at a time, we only used the Space-Wide and Zone-Wide scopes;
Peer-to-Peer typically produces the same output as Zone-Wide in
such cases (Sec. 4.3). With 2 Scopes x 11 Optimization Strategies (5
threshold pairs each for Interaction-First and Privacy-First, plus 1
Ownership-Based policy), this resulted in 22 simulation trials.

Step 3: Analyzing UX and Privacy Tradeoffs: To identify
which strategies balanced the needs of the visually-impaired user
with the privacy concerns of the bystander, we used the dashboard
to inspect timeline plots from the simulations that maintained a Per-
mission Satisfaction Score of at least 0.8 for the low vision user. Since
this score provides only a coarse-grained estimate of the impact on
UX, we examined whether the specific permission restrictions in
Unity aligned with our intuition of what sensing capabilities are
required to maintain Navigation functionality (i.e., spatial mapping).
Two trials met our selection criteria (Fig. 9), for which we make the
following observations:
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Figure 9: Application # 1: Visual Access in a Hospital Setting. Our experiments surfaced two negotiation strategies that enable a
low-vision user (in blue) to safely navigate using AR while respecting the privacy preferences of a Location-Concerned bystander
(in pink). In the Zone-Wide, Privacy-First approach on the left, a negotiation is triggered when the low-vision user comes
near the bystander (1, 2), leading to a temporary restriction on people detection (while preserving safety-critical AR sensing
capabilities like spatial mapping and object detection) until the people separate (3, 4). In the Space-Wide, Privacy-First approach
on the right, users’ Privacy Satisfaction thresholds are checked when the low vision user enters the waiting area (5); since no
users would fall below their 0.8 threshold, no adjustments to the AR sensing capabilities are needed (6, 7).

(1) The Zone-Wide, Privacy-First strategy with Per User Thresh-

olds met the bystander’s privacy concerns by downgrad-
ing the low-vision user’s less essential sensing capabilities.
This strategy resulted in a 0.8 Permission Satisfaction Score for
the low-vision user and 0.87 Privacy Satisfaction Score for the
bystander (Fig. 9.2). The primary sensing restriction was on
people detection; we considered this an acceptable tradeoff,
as the Navigation app could still rely on spatial mapping and
object detection to safely redirect the low-vision user during
the short period of proximity to the bystander. The Zone-Wide
scope avoided prematurely restricting AR functionality before
a privacy concern arose, only adjusting AR sensing capabilities
as the two users neared each other.

(2) The Space-Wide, Privacy-First strategy proactively consid-
ered whether to adjust sensing capabilities to minimize
bystander privacy risks. We set a global threshold of 0.8 for
both the Permission and Privacy Satisfaction Scores. As shown
in Figure 9.5, the negotiation was triggered when the low-vision
user entered the waiting area. AR functionality remained fully

intact for the low-vision user, causing the bystander to experi-
ence a drop in Privacy Satisfaction to 0.8 (Fig. 9.6-7). However,
we consider the bystander to be at low privacy risk due to the
limited exposure period and the fact that their privacy require-
ments were not violated, as defined by their threshold.

Appendix A.5 provides a full walkthrough of how the Privacy-
First algorithm (Alg. 1) determines negotiated sensing configura-
tions for this scenario.

6.2 Office Scenario: Balancing Privacy
Preferences at the Extremes

To assess the robustness of our optimization approach in bridg-
ing gaps between heterogeneous users, we explored a scenario
with conflicting privacy preferences (ranging from unconcerned to
highly concerned users).

Step 1: Specifying the Context of Use: This scenario was
set in an office space (environment shown in Fig. 8). To isolate
the effects of different privacy profile pairings, we simulated in-
teractions between two people using the same AR Telepresence
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Figure 10: Application #2: Resolving Conflicting Privacy Preferences. Which strategies incur equal tradeoffs for UX and privacy
when users have varying levels of concern? We simulated interactions between two privacy personas pairs: {Fundamentalist x
Biometric-Concerned} and {Fundamentalist x Unconcerned}. For the latter pair, we plot the per-user Permission and Privacy
Satisfaction Scores immediately after a negotiation (A) and as averages across the multi-user interaction (B). Our analysis shows
that Space-Wide scope effectively balanced users’ conflicting preferences, while Ownership-Based approaches led to lower
Permission Satisfaction Scores, disproportionately affecting the Unconcerned user in the Zone-Wide approach.

app, animating one user to enter the lab space and sit down at a
desk, while crossing paths with an existing user in the office. The
pairings included a highly risk-averse Privacy Fundamentalist and
a Privacy Unconcerned user, as well as the Fundamentalist paired
with a Biometric-Concerned user who is averse to sensing that could
reveal their identity or personal characteristics.

Step 2: Configuring the Negotiation Process: Using the same
procedure as our first application scenario, we simulated multi-
user interactions with different Equilibrium Scopes crossed with
Optimization Strategies, using varying Permission and Privacy
Satisfaction thresholds. For the Space-Wide Ownership-Based ap-
proach, we applied a zone over the office that restricts biometric
data collection. Across all the different pairings, this resulted in 34
simulation trials.

Step 3: Analyzing UX and Privacy Tradeoffs: To analyze
whether each strategy impacted users in a balanced or imbalanced
manner, we plotted the individual Permission and Privacy Satis-
faction Scores in two ways: immediately after the negotiation, and
averaged over the full simulation duration (which we call “uptime”).
We made three main observations, illustrated in Fig. 10 for the pri-
vacy personas at the extremes (Fundamentalist and Unconcerned).

o The Space-Wide, Interaction-First strategy minimized degra-
dations to UX and privacy. It produced the only non-dominated
point on the Pareto Frontier across all simulation configurations
(green point in the upper right corner of each plot), suggesting
it resolved differences in users’ conflicting privacy needs in a
balanced manner. However, we note that over multi-user inter-
actions of a longer duration, the Permission Satisfaction uptime
may decline (shifting left in Fig. 10B). This is because the Space-
Wide scope restricts AR sensing capabilities even when users’
devices are not within proximity of each other.
The Space-Wide, Ownership-Based strategy—representative
of World-Driven Access Control [39]—subjected all users
to equal UX tradeoffs. Note that under this strategy (yellow
points in Fig. 10A), the tradeoffs will vary based on the set of
allowed AR sensing capabilities in a given space. We simulated a
moderate policy in line with the Biometric-Concerned profile; nev-
ertheless, our Interaction-First optimization approach achieved a
better tradeoff for users with more extreme privacy preferences.
e The Zone-Wide, Ownership-Based approach disproportion-
ately impacted UX for less privacy-concerned users. This is
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evident in the Fundamentalist’s Permission Satisfaction Score re-
maining at 1.0, while the Unconcerned user’s score dropped to
0.68 when using the same AR application (red point in Fig. 10A).
While the combination of Zone-Wide scope with Ownership-
Based optimization is ideal for granting users control over their
privacy in personal spaces (e.g., a private office), our results sug-
gest it may be less viable in shared public environments.

7 Walkthrough of Privacy Equilibrium Toolkit
with Security & Privacy Experts

To further validate our framework and elicit improvements for
its instantiation within our toolkit, we conducted a walkthrough
evaluation [27] with eight researchers specializing in S&P and AR-
related technologies. We chose to work with researchers as they
represent a primary class of target users for our toolkit, which we
intend as a platform for prototyping privacy-mediating techniques
for everyday AR and exploring the sociotechnical implications in
different scenarios. In line with this goal, our study tasked the
researchers with using our toolkit to compare sensing negotiation
strategies for our hospital and office scenarios and assessing to
what extent they balanced competing user needs.

7.1 Participants

Through our professional networks, we recruited eight researchers
with core expertise in security and privacy, along with experience
working on AR or related technologies such as IoT and cloud sys-
tems. This included four professors and four late-stage PhD students
(mean age of 36; two preferred not to report). Three participants
had 3+ years of S&P research experience; five had 5+ years across
venues such as CHI, USENIX Security, SOUPS, and ISMAR.

7.2 Method

We conducted individual, 1-hour study sessions over Zoom. Partici-

pants were compensated with $20 USD gift vouchers for their time.

We centered our studies around the two scenarios used in our ap-

plication demonstration (Sec. 6), involving AR users and non-users

who have conflicting UX and privacy goals in two environments:

(1) Hospital Waiting Area: A visually-impaired person using AR
for navigation passes by a Location-Concerned bystander who
wants to prevent others from inferring their activities in the
space (Fig. 9).

(2) Office Space: Two AR users with contrasting privacy preferences-
a risk-averse Privacy Fundamentalist and a Privacy Unconcerned
user—cross paths with each other, as well as a Biometric Data-
Concerned bystander who is averse to sensing that could reveal
their identity or personal characteristics (Fig. 8).

Using our toolkit to demonstrate each scenario, we guided par-
ticipants through two tasks: (1) defining what constitutes a balance
between the involved users’ UX and privacy needs and how sensing
policies could be adjusted to achieve it; (2) reviewing three exam-
ples of negotiation strategies and assessing to what extent each
achieves the desired Privacy Equilibrium defined in Task 1. The S&P
experts completed both tasks for one scenario, then repeated both
for the second scenario, with the scenario order counterbalanced
between participants.

S. Rajaram, ). Chen, M. Nebeling

Task 1: Analyzing Scenario-Dependent Conditions for Equi-
librium (5 min per scenario): The goal of the first task was to estab-
lish a baseline understanding, from the S&P experts’ perspectives,
of what achieving a Privacy Equilibrium would require in each sce-
nario. We used the Unity simulation engine to present each user’s
AR sensing requirements and privacy preferences, and played an-
imation sequences showing how users moved through the space.
Then, we asked the experts to assess to what extent a balance al-
ready exists between the UX and privacy needs of all people in the
space. If they perceived an imbalance, they identified specific points
in the animation where adjusting the use of AR sensing capabilities
could help achieve a balance. To avoid biasing their assessments,
we hid simulation features that explicitly referenced components
of our framework, such as zones and score visualizations.

Task 2: Reviewing and Ranking Strategies to Establish a
Privacy Equilibrium (20 min per scenario): To understand how the
S&P experts would leverage different features of the toolkit to weigh
the benefits and limitations of various negotiation strategies, we pre-
sented them with three examples that represented non-dominated
points on the Pareto Frontier (Fig. 5), but had very different im-
plications for users’ UX and privacy. To find these examples, we
systematically ran optimizations with different thresholds for the
hospital and office scenarios (described in Sec.6.1) and filtered out
trials that produced identical Permission and Privacy Satisfaction
averages. Then, we then selected two Equilibrium points from the
extremes of the tradeoff curve (maximizing Permission and Privacy
Satisfaction) and one from the middle (balancing the two).

We demonstrated the strategies one at a time via the Unity simu-
lation engine, bringing back visualizations of the zones, AR Sensing
Profiles, and Equilibrium scores. This helped the S&P experts un-
derstand the AR glasses’ sensing range, when users entered and
exited proximity, and the impact of specific negotiated sensing
policies. Before moving to the next strategy, experts inspected the
timeline plots of Equilibrium scores in our dashboard, thinking
aloud to describe any patterns they could see. After the second and
third strategies, we asked them to discuss whether the new strategy
achieved a better UX-privacy tradeoff than the previous, based on
their usage and understanding of the toolkit features.

Discussion (10 min): We ended with a discussion to understand
the benefits and limitations of key components of our framework:
(1) Inputs to our optimization strategies, including user profiles for
sensing capabilities and privacy preferences, users’ movement data,
and customizable thresholds for Permission and Privacy Satisfac-
tion; (2) Equilibrium scores to assess UX-privacy tradeoffs (Sec. 4.5).
Lastly, the experts reflected on pros and cons of the toolkit features
for interpreting the scenario context and evaluating the effective-
ness of the optimization strategies.

7.3 Data Collection & Analysis

We captured screen and audio recordings of study sessions for later
analysis. During each session, the experimenter noted observations
on the experts’ toolkit usage behaviors, based on which features
they were interacting with or referring to during via think-aloud.
We used an affinity diagramming approach [44] to extract and
consolidate themes from audio transcripts and notes.
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7.4 Results

We organize our findings into four themes that capture how the
S&P experts assessed the Privacy Equilibrium framework and en-
gaged with the toolkit. First, we discuss the expressiveness of our
optimization approach for balancing competing user needs, and the
effectiveness of our metrics in modeling UX and privacy tradeoffs.

Theme 1: Benefits of our framework in enabling flexi-
ble and fine-grained sensing negotiation. Experts emphasized
the need for granular control over how and to whom sensing re-
strictions are applied, and identified multiple components of our
framework that support such control. In terms of the Equilibrium
scope dimension, the Zone-Wide approach was perceived to offer
the most flexibility (E1, E5, E7). In contrast with the Space-Wide
scope, E1 noted that users in distant zones “can just live their lives...
rather than having to restrict a sensor that can’t even collect data
[from] the area that’s private” Experts also appreciated the user
agency afforded by the Privacy-First and Interaction-First optimiza-
tion strategies: “[all] users have some say in” the negotiation by
customizing Permission and Privacy Satisfaction thresholds (E4).

Beyond explicitly calling for flexible AR access control, experts
demonstrated this need by proposing many distinct Equilibrium def-
initions across the two scenarios, each of which could be expressed
and evaluated within our framework. When potential consequences
of privacy violations were unclear, many chose to “err on the side
of [caution]” (E7), favoring strategies that fully maximized Privacy
Satisfaction (E5-8). In such cases where UX tradeoffs were nec-
essary, experts had two contrasting proposals: distributing costs
evenly across all AR users (E1, E3, E4) or or concentrating costs on
a few users to minimize the number negatively impacted (E2, E8).
The exception was the low-vision user in the hospital scenario, for
whom experts prioritized maintaining full functionality.

Theme 2: Limitations of our framework in modeling the
impact of sensing restrictions and severity of private data
exposure. All experts were able to use the Permission and Privacy
Satisfaction Scores to gauge which strategies aligned with their
definitions for Privacy Equilibrium from Task 1. However, they
noted these scores only provide a coarse-grained approximation of
the impact of sensing negotiations, wanting finer-grained insight
into potential adverse effects on both UX and privacy. As E4 put it,
this requires modeling the “the semantics” of how AR applications
leverage sensing capabilities, “not just the syntax.”

In terms of UX, experts wanted to understand how AR applica-
tions adapt to sensing restrictions (E1-4), and if a user “loses access
to information” or key functionality, “how vulnerable” they become
(E1), particularly for the low-vision user in the hospital scenario.

On the privacy side, experts sought more details on the granu-
larity of data captured by AR apps and the likelihood of leaking
bystander data (E1-2, E5-6, E8), based on data storage and retention
policies (E2-4). They also stressed that “a number on [privacy] is
just not enough” (E7) to capture nuances in users’ perception of
experiencing a privacy violation (E2-3, E7). As E2 expressed, “what
does 15% uncomfortable vs. 30% mean?” E7 also noted the asymmet-
ric nature of the Privacy vs. Permission Satisfaction Scores: with
privacy, “‘once you lose something, it’s lost. UX can be recovered.”
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Finally, we present two themes around the types of analysis our
toolkit enabled and discuss opportunities for improvement.

Theme 3: Simulated motion paths, zones, and in-situ score
visualizations supported analyzing scenarios with multiple
levels of abstraction. The Unity simulation engine effectively
conveyed the context of each scenario, allowing S&P experts to
understand sensing negotiations and reason beyond what was ex-
plicitly shown. Visualizing motion paths and zone intersections not
only helped them identify when and where negotiations occurred,
but also assess potential exposure of private data based on AR
devices’ sensing range and user orientation (E1-2, E4, E6-8). For
example, E4 and E8 considered the hospital bystander to have low
privacy risk since they were not facing the AR user. The AR Sens-
ing Profile Uls anchored to users also supported different types of
analysis: some experts gauged sensing restrictions at a high level by
tracking color changes from red to white (E1, E3, E7), while others
zoomed in to weigh the impact of specific restricted capabilities.

To more accurately model how AR interfaces adapt and the
severity of data exposure, experts suggested visualizing AR users’
first-person perspective (E2) and sensors’ fields of view (E6).

Theme 4: Timeline visualizations of scores enabled “local
planning vs. global planning” (E5). Similarly, the dashboard’s
timeline plots enabled analyzing UX-privacy tradeoffs at multiple
time scales. All experts examined the height of “dents” (E3) in the
Permission and Privacy Satisfaction timelines to assess the impact
of negotiations on individual users. Many also considered the du-
ration of score drops (E2-E5, E7-E8) to evaluate which strategies
were more “efficient in regaining the original values” (E3). Beyond
individual negotiations, the timelines enabled broader assessments
of balance and fairness by making visible how many users were
affected and how often their scores dipped throughout the scenario.

To better enable toolkit users to simultaneously perform local
and global analysis, E1 proposed embedding videos of negotiations
from the simulation engine within the dashboard.

7.5 Study Limitations

We note two main limitations of our studies: the generalizability of
our results to real-world AR usage scenarios and to toolkit users
without S&P expertise.

Generalizability of scenarios: The scenarios explored in our
application walkthroughs (Sec.6) and studies with S&P researchers
were limited in number and scope, focusing primarily on public
contexts and involving a small set of simulated AR users and non-
users. While we took steps to represent users realistically (e.g.,
recording motion paths through real physical environments, devel-
oping privacy personas based on empirical surveys of end-users’
perceptions of risk [15, 16, 30]), our insights into the benefits and
limitations of different negotiation strategies may not generalize
as AR devices become more widely available and privacy attitudes
evolve. We see potential in our toolkit to help bridge these gaps in
understanding as the AR landscape advances, as it was designed
to be extensible for modeling novel scenarios (through specifying
new usage contexts, AR device capabilities, and privacy personas).

Study sample: The study involved researchers whose primary
expertise lies in security & privacy, applied to AR, IoT, and related



UIST °25, September 28-October 01, 2025, Busan, Republic of Korea

technologies. Some participants reported having high standards
for protecting their own privacy, which at times led them to prefer
optimization strategies that prioritized minimizing privacy risks
over preserving UX. As such, their perspectives may not fully reflect
those of other toolkit users, such as AR system designers who may
be inclined to prioritize usability or implementation feasibility.

8 Discussion

Throughout our development of the Privacy Equilibrium frame-
work and studies with S&P experts, we used simulation [28] to
evaluate the flexibility of our optimization approach and probe into
sociotechnical considerations for privacy mediation in AR (e.g.,
how different environments shape privacy norms, and what consti-
tutes a “fair” balance for users with conflicting needs). While such
explorations are not yet feasible in realistic usage settings, due to a
limited AR user base and the lack of cross-platform infrastructure
to communicate negotiation inputs and outputs, they raised impor-
tant questions on what it would take to translate our framework’s
underlying concepts to future AR use: How can we elicit privacy
preferences from AR users and bystanders in dynamic contexts,
model associated risks with higher granularity, and convey to AR
users how negotiations affect their AR experiences?

We reflect on these questions relative to our current implemen-
tation of the framework and suggest research directions to bridge
the gap to real-world implementation.

Enabling AR users & bystanders to participate and express
preferences for negotiations. As inputs to negotiations, we rely
on user profiles that define their AR sensing requirements (specified
by AR application developers) and privacy preferences towards oth-
ers who may be sensing in the same environment (specified by AR
users). To align with prior access control frameworks (Sec. 2.2) and
to support compatibility with today’s AR applications, we format
these profiles as permission models—sets of sensing capabilities that
can be granted to or restricted from AR applications. However, a
limitation is that these models are not easily human-understandable,
and would likely require users to have technical knowledge of AR
and associated privacy risks.

Our toolkit demonstrates one way to lessen users’ burden: al-
lowing them to select Interpersonal Privacy Profiles aligned with
privacy personas [15] that reflect their typical behaviors. However,
this barrier must be further lowered as AR is increasingly used in
everyday settings, as users will have limited “compliance budgets”
(time and effort) to manage their context-dependent privacy needs,
especially in dynamic environments [5]. We see potential to apply
recent approaches that model privacy preferences based on past
perceptions of risk [48], but note that such personalization tech-
niques can also introduce new privacy risks. Future work should
explore interaction techniques and technical requirements for AR
non-users to participate in negotiations (e.g., broadcasting privacy
preferences and proximity data via Bluetooth on their phones).

Fine-grained modeling of AR user experience and privacy
risks. To enable modeling AR sensing negotiations as constrained
optimization problems, we designed our Equilibrium Scores to be
easily computed from user profiles and expressed as clear thresh-
olds representing UX and privacy expectations. However, as noted
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by the S&P experts, these single-value metrics do not fully capture
the nuance of how AR interfaces are affected by sensing restrictions,
or when interactions with other AR users might pose privacy risks.
Experts suggested modeling UX satisfaction at the level of adapta-
tion techniques [34] (e.g., measuring users’ reaction time or task
performance when switching interaction modalities to cope with a
sensing restriction). On the privacy side, they recommended model-
ing the severity of specific threats (e.g., speech recognition picking
up a social security number versus a casual chat with friends). While
we see the merit of this approach from a simulation perspective to
better understand the pros and cons of negotiation strategies, we
anticipate potential S&P risks for real-world implementation. For
example, requiring AR apps to disclose which privacy-enhancing
technologies or adaptation techniques they support could make
new attack vectors visible. Similarly, if a centralized negotiation en-
gine must detect and interpret data types that users deem sensitive,
it may risk exposing even more personal information.

Conveying the impact of negotiations to AR users. Finally,
we see a need for future work on explainability techniques [47]
to help AR users understand why and how their functionality is
adapted to preserve privacy. Our simulations suggest that with
Zone-Based scopes or crowded environments, functionality may
be frequently granted, degraded, or reverted based on ongoing
negotiations. As such, it is critical to explore techniques that mini-
mize disruptions to UX (e.g., guiding users through AR interface
transitions) and enhance transparency (e.g., informing users of the
benefits they gain from privacy-preserving measures).

9 Conclusion

This paper introduced the Privacy Equilibrium framework for bal-
ancing privacy in multi-user AR scenarios, using constrained op-
timization to facilitate system-driven negotiations of AR sensing
capabilities. Our framework formalizes definitions for Equilibrium
Scopes, Optimization Strategies, Equilibrium Scores to assess trade-
offs between UX and privacy. Based on this framework, we devel-
oped a simulation and analysis toolkit to prototype and evaluate
different negotiation strategies across multi-user scenarios. Our
application demonstrations, set in hospital and office environments,
illustrated our framework’s flexibility to resolve conflicting user
needs, and walkthroughs with S&P researchers surfaced initial
feedback to improve our toolkit. Future work could investigate
deeper modeling of interface-level AR adaptations and data expo-
sure, as well as mixed-initiative approaches to increase end-users’
awareness and control over the negotiation process.
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A Appendix
A.1 Equilibrium Optimization Algorithms

Algorithm 1 presents pseudo-code for solving the Privacy-First optimization objective, as detailed in Section 4.6.

Algorithm 1 Privacy-First Optimization Pseudo-Code

Inputs: AR Sensing Profiles {s;;}, Interpersonal Privacy Profiles {p;;}, Permission Satisfaction thresholds {S;}, Privacy Satisfaction
thresholds {#;}, function weights {w;;}, where i indexes users and j indexes sensing functions
Output: Negotiated permissions {x;}

Variables: Permission Satisfaction Score before (after) change S;; (S] j)’ Privacy Satisfaction Score before (after) change P;; (P; j), sensing

function to loosen j*

for each sensing function j do

xj < max;{pi;} > Initialize negotiated sensing configuration to most restrictive for max privacy
end for
while {S;} and {#;} thresholds not met do > Loop while Permission and Privacy Satisfaction thresholds are not met

for each sensing function j do
AS;j < min; S;; — min; Slfj
APij < min; Pi’j — min; P;; > Compute difference in Privacy Satisfaction Score if sensing function j loosened

> Compute difference in Permission Satisfaction Score if sensing function j loosened

AS,-j
tradeoffScore « TTAPT

if tradeoffScore > bestTradeoffScore then

J' e
bestTradeoffScore «— tradeoffScore > Maximize Permission Satisfaction with minimal Privacy Satisfaction loss
end if
end for
Xje — xjx +1 > Loosen sensing function that achieves the best tradeoff
end while

The Interaction-First strategy can be written as:

n};;x min ; wijPij (6)
subject to Z Sij = S, Vi (7)
J
(1),(2)

Xj,Sij, Pij € {0,1,...,N}

It guarantees that every user meets their Permission Satisfaction threshold S;, and seeks to meet their Privacy Satisfaction thresholds by
maximizing the minimum Privacy Satisfaction Score across all users.
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A.2 AR Sensing Profile Format and Example

For reference, we include the AR Sensing Profile format from our Unity implementation, defined as a C# class. To simulate fine-grained
sensing negotiations, we designed a permission model in-line with recent work [24], stratifying permissions across sensing capabilities (e.g.,
spatial mapping) with different access levels for three data operations: capturing, computing, and storing sensor data. Each data operation is
assigned a Permission Priority (Must Have, Nice To Have, and Can Do Without) to indicate the importance of each sensing function to app
functionality. These priority values serve as weights in calculating the Permission and Privacy Satisfaction Scores (Sec. 4.6).

public class ARSensingProfile {
public SensingPermissions SpatialMapping;
public SensingPermissions GestureRecognition;
public SensingPermissions SpeechRecognition;
public SensingPermissions EyeTracking;
public SensingPermissions Gaze;
public SensingPermissions ObjectDetection;
public SensingPermissions PeopleDetection;

}

public class SensingPermissions {
public CapturePermissions Capture;
public PermissionPriority CapturePriority;
public string CaptureRationale;

public ComputationPermissions Computation;
public PermissionPriority ComputationPriority;
public string ComputationRationale;

public StoragePermissions Storage;
public PermissionPriority StoragePriority;
public string StorageRationale;
}
public enum CapturePermissions { Live, Precaptured, None }
public enum ComputationPermissions { CloudAndLocal, Local, None }
public enum StoragePermissions { CloudAndLocal, Local, None }
public enum PermissionPriority { MustHave, NiceToHave, CanDoWithout }

A.2.1 Example App Sensing Profile: Accessible Navigation. Our toolkit includes five initial AR Sensing Profiles in JSON format, corresponding
to Accessible Navigation, Messaging, Telepresence, and Virtual Desktop applications, along with a generic profile that requests no permissions
to represent non-AR users (NotUsingAR). We generated these profiles by prompting GPT-40 with descriptions of each application and the
corresponding JSON structure, then manually refining them for accuracy and specificity. New profiles can be defined through JSON files
placed in the /Resource directory in the Unity Assets folder. These profiles are converted to an ARSensingProfile C# class at runtime.
Here, we show the full profile for the Accessible Navigation application used in our hospital scenario (Sec. 6.1). Additional predefined
profiles in our toolkit are provided in the Supplementary Material.
{ "Name": "Accessible Navigation",

"Permissions": {
"SpatialMapping": {

"Capture": "Live",

"CapturePriority": "MustHave",

"CaptureRationale": "Real-time spatial mapping is necessary for detecting obstacles and creating safe walking paths.",

"Computation": "Local",

"ComputationPriority": "MustHave",

"ComputationRationale": "Local computation ensures timely processing of spatial data for real-time navigation feedback.",

"Storage": "None",

"StoragePriority": "CanDoWithout",

"StorageRationale": "Persistent storage is not required as spatial mapping is only relevant for immediate navigation."
3,
"GestureRecognition": {

"Capture": "None",

"CapturePriority": "CanDoWithout",

"CaptureRationale": "Gesture recognition is not critical for the app's functionality.",

"Computation": "None",

"ComputationPriority": "CanDoWithout",
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"ComputationRationale": Gesture-based user input is not required, since the navigation application takes speech input.",

"Storage": "None",

"StoragePriority": "CanDoWithout",

"StorageRationale": "Gesture storage is not needed, as gestures can be processed in real time without being retained."
3,
"SpeechRecognition": {

"Capture": "Live",

"CapturePriority": "NiceToHave",

"CaptureRationale": "Live speech recognition can allow voice commands for navigation, but it is not strictly required.",

"Computation": "Local",

"ComputationPriority": "NiceToHave",

"ComputationRationale": "Local computation ensures responsiveness for recognizing voice commands.",

"Storage": "None",

"StoragePriority": "CanDoWithout",

"StorageRationale": "Speech storage is not needed, as commands can be processed in real time without being retained."
h
"EyeTracking": {

"Capture": "None",

"CapturePriority": "CanDoWithout",

"CaptureRationale": "Eye-tracking is not required for the app's core functionality.",

"Computation": "None",

"ComputationPriority": "CanDoWithout",
"ComputationRationale": "No computation for eye-tracking are necessary, as the app does not utilize eye gaze for interaction.",

"Storage": "None",
"StoragePriority": "CanDoWithout",
"StorageRationale": "Eye-tracking data storage is not applicable since the app does not rely on this sensing capability."
+
"Gaze": {
"Capture": "Live",
"CapturePriority": "NiceToHave",
"CaptureRationale": "Live gaze could enhance navigation by determining the user's head orientation to align spatial audio.",
"Computation": "Local",
"ComputationPriority": "NiceToHave",
"ComputationRationale": "Local computation ensures responsive processing of gaze data without requiring cloud resources.",
"Storage": "None",
"StoragePriority": "CanDoWithout",
"StorageRationale": "Gaze data storage is not needed, as it is only relevant for real-time feedback and alignment."
b
"ObjectDetection": {
"Capture": "Live",
"CapturePriority": "MustHave",
"CaptureRationale": "Live object detection is essential for identifying obstacles and safe paths in real time.",
"Computation": "Local",
"ComputationPriority": "MustHave",
"ComputationRationale": "Local computation ensures timely processing of object detection data for immediate feedback.",
"Storage": "None",
"StoragePriority": "CanDoWithout",
"StorageRationale": "Persistent object detection storage is not required, as the data is only needed in real-time."
h
"PeopleDetection": {
"Capture": "Live",
"CapturePriority": "MustHave",
"CaptureRationale": "Live people detection is critical to identify individuals and ensure safe navigation.",
"Computation": "Local",
"ComputationPriority": "MustHave",
"ComputationRationale": "Local computation enables real-time processing of data, ensuring prompt feedback to the user.",
"Storage": "None",
"StoragePriority": "CanDoWithout",
"StorageRationale": "Persistent storage of people detection data is not necessary, as the data is only used temporarily."
}
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A3

In our

Interpersonal Privacy Profile Example

current implementation, Interpersonal Privacy Profiles are expressed as privacy personas [15] are mapped to a permission model in

the same format as the AR Sensing Profile (Appendix A.2). Our toolkit supports flexibly adjusting the format.

We

provide an example profile corresponding to a Privacy Fundamentalist persona who seeks to minimize other AR users’ capture and
processing of data that could reveal their activities or sensitive information about them. As with the AR Sensing Profiles, we prompted GPT-40
to generate initial profiles, given descriptions of each persona as input, then we revised for accuracy and specificity. Please reference the
Supplementary Material for other Interpersonal Privacy Profiles included in the toolkit (Privacy Unconcerned User, Biometric Data-Concerned

User, Location-Concerned User).

{ "Name": "Privacy Fundamentalist",
"Permissions": {
"SpatialMapping": {

"Capture": "Precaptured",
"CapturePriority": "MustHave",
"CaptureRationale": "Prefers precaptured data to reduce risk of live environmental tracking by other users.",
"Computation": "Local",
"ComputationPriority": "MustHave",
"ComputationRationale": "Accepts local processing to prevent external access or remote analysis of spatial environments.",
"Storage": "None",
"StoragePriority": "MustHave",
"StorageRationale": "Rejects storage to avoid future access or misuse of spatial environment data."
b
"GestureRecognition": {
"Capture": "Live",
"CapturePriority": "MustHave",
"CaptureRationale": "Allows limited live gesture use that doesn’t reveal identity or behavioral patterns."”,
"Computation": "Local",
"ComputationPriority": "MustHave",
"ComputationRationale": "Requires local processing to prevent gesture data from being transmitted or analyzed externally.",
"Storage": "None",
"StoragePriority": "MustHave",
"StorageRationale": "Does not allow gesture data to be stored or referenced later."
+
"SpeechRecognition": {
"Capture": "Precaptured",
"CapturePriority": "MustHave",
"CaptureRationale": "Only comfortable with pre-recorded speech to avoid live monitoring or unintended listening.",
"Computation": "Local",
"ComputationPriority": "MustHave",
"ComputationRationale": "Permits local speech processing to avoid exposing conversations to external servers.",
"Storage": "None",
"StoragePriority": "MustHave",
"StorageRationale": "Rejects speech storage to prevent misuse or unauthorized review of voice content."
b
"EyeTracking": {
"Capture": "Live",
"CapturePriority": "MustHave",
"CaptureRationale": "Permits live eye tracking only if data stays local and untraceable.",
"Computation": "Local",
"ComputationPriority": "MustHave",
"ComputationRationale": "Demands local-only processing to prevent external use of sensitive eye movement patterns.",
"Storage": "None",
"StoragePriority": "MustHave",
"StorageRationale": "Requires no retention of eye-tracking data to eliminate future privacy risks."
+
"Gaze": {
"Capture": "Live",
"CapturePriority": "MustHave",
"CaptureRationale": "Live gaze tracking allowed only if data is not stored or remotely processed.",
"Computation": "Local",
"ComputationPriority": "MustHave",

"ComputationRationale": "Gaze data must be processed locally to safeguard orientation-related privacy.",

S. Rajaram, ). Chen, M. Nebeling
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"Storage": "None",
"StoragePriority": "MustHave",
"StorageRationale": "No storage of gaze information to prevent profiling or retrospective inference."
b
"ObjectDetection": {
"Capture": "None",
"CapturePriority": "MustHave",
"CaptureRationale": "Does not permit object recognition due to risks of exposing private possessions.",
"Computation": "None",
"ComputationPriority": "MustHave",
"ComputationRationale": "Prohibits object analysis to avoid identifying personal belongings or contextual clues.",
"Storage": "None",
"StoragePriority": "MustHave",
"StorageRationale": "Object data should never be saved to eliminate potential privacy violations."
3
"PeopleDetection": {
"Capture": "None",
"CapturePriority": "MustHave",
"CaptureRationale": "Rejects detection of individuals to protect physical presence and personal identity.",
"Computation": "None",
"ComputationPriority": "MustHave",
"ComputationRationale": "No people analysis allowed to avoid identification, profiling, or location tracking.",
"Storage": "None",
"StoragePriority": "MustHave",
"StorageRationale": "People data must not be stored to preserve anonymity and privacy."
3
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A.4 Unity Simulation Engine Interface Walkthrough
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Figure 11: Simulation Engine Interface. Section 5 details our toolkit’s three-step workflow for simulating multi-user scenarios and
different ways to negotiate a Privacy Equilibrium. Here, we walk through how to perform each step in the simulation engine’s user interface.

Step 1: Specifying the Context of Use. The bottom toolbar provides controls to add AR users and bystanders to the scene (F),
then customize their AR applications (G) and privacy persona (H). Toolkit users can define new AR Sensing Profiles and Interpersonal
Privacy Profiles as JSON files in the /Resource directory, using the format specified in Appendices A.2-A.3. Pre-scripted animation
sequences can be triggered on a per-user basis (F) or for multiple users at a time (E) to illustrate their movements in the space. New anima-
tions can be recorded via Unity’s Timeline Animation tools and linked to a particular simulation environment through an associated C# script.

Step 2: Configuring the Negotiation Process. Toolkit users can experiment with different Equilibrium Scopes (A) and Opti-
mization Strategies (B) through dropdowns in the top toolbar. For simplicity, we separate the Privacy-First and Interaction-First strategies
into two modes (B): one applies global thresholds for Permission and Privacy Satisfaction across all users (configured in D). The “Per-User”
Privacy-First and Interaction-First modes allow setting individual score thresholds (F), enabling prioritization of specific users’ needs, for
example, assigning a higher Privacy threshold to favor the blue bystander’s preferences in the Office scenario.

Step 3: Analyzing UX & Privacy Tradeoffs. To weigh the impact of negotiation strategies on all users in real time, toolkit
users can monitor the Equilibrium Scores on a per-user basis (F) and as aggregated averages across all users (C).
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A.5 Hospital Application Scenario: Detailed Walkthrough

In this section, we first detail how we selected threshold combinations for our application scenarios (Sec. 6) to produce distinct Equilibrium
points along the Pareto Frontier. Then, we walk through the full execution of the Privacy-First algorithm for the hospital scenario (Sec. 6.1).

A.5.1 Threshold Selection Process. To systematically explore negotiation strategies enabled by our framework, we ran a series of simulations
to identify Permission and Privacy Satisfaction threshold pairs that consistently yield distinct sensing configurations (i.e., Equilibrium points)
across different privacy personas. First, we configured three pairs of personas with varying levels of privacy concern (combinations of
Privacy Fundamentalist, Unconcerned, and Biometric Data-Concerned users). Then, assuming all personas were using the same AR Messaging
app, we computed Privacy-First negotiations, varying both thresholds from 0.6 to 1.0 in 0.1 intervals. This setup involved 27 threshold pairs
per persona combination, for a total of 81 trials.

Then, we averaged the Permission and Privacy Satisfaction Scores for each persona combination and computed a five-number summary
for each. By analyzing the distance of each trial to the 1st quartile, median, and 3rd quartile, we identified the threshold combinations closest
to these markers across all trials. In other words, these threshold pairs produced different Equilibrium points from one another in all three
persona scenarios. Table 1 summarizes the final threshold pairs that we used in our application scenarios (Sec. 6) and toolkit walkthroughs
with S&P researchers (Sec. 7).

Privacy-First® | Interaction-First* | Ownership-Based”
Permission Satisfaction Threshold | 0 | 0.8 | 0.6 | 0.7 | 1| 0.8 | 0.8 | 0.9 -
Privacy Satisfaction Threshold 1108(08[09[0|08]06]07 |-

Table 1: Threshold Combinations used in Application Scenarios. Based on our threshold selection process, we chose three pairs
of Permission Satisfaction thresholds (S;) and Privacy Satisfaction thresholds (#;) that produce different Privacy Equilibrium points
along the Pareto Frontier ({S; = 0.8,P; = 0.8}, {Si = 0.6,P; = 0.8}, {S; = 0.7,P; = 0.9}) for the Privacy-First strategy. For the
Interaction-First strategy, we flipped the threshold values to set a higher Permission Satisfaction threshold than Privacy Satisfaction
threshold (e.g., {S; = 0.8, #; = 0.6}). We added threshold pairs that completely maximize Privacy Satisfaction ({S; = 0, ; = 1}) for the
Privacy-First approach and maximize Permission Satisfaction ({S; = 1, #; = 0}) for the Interaction-First approach.

(*) We simulated each Optimization Strategy with the Space-Wide and Zone-Wide scopes.

A.5.2  Walkthrough of Space-Wide, Privacy-First Optimization Algorithm. Our hospital application scenario (Sec. 6.1, Fig. 9), illustrates a
Space-Wide, Privacy-First negotiation where both the low-vision user’s and Location-Concerned bystander’s thresholds for Permission
Satisfaction (S; = 0.8) and Privacy Satisfaction (P; = 0.8) were already met, so all permissions were granted to the low-vision user. However,
if we adjust these thresholds to {S; = 0.7, #; = 0.9}, the bystander’s Privacy Satisfaction threshold is no longer met by default.

We walk through the Privacy-First algorithm (Alg. 1) for this case. Appendix A.2 includes the low-vision user’s AR Sensing Profile for the
Accessible Navigation app. Please find the bystander’s Location-Concerned Interpersonal Privacy Profile in the Supplementary Material.

First Iteration of Privacy-First Optimization Algorithm. The Privacy-First approach attempts to adjust the low-vision user’s AR
Sensing Profile to align with the Location-Concerned bystander’s Interpersonal Privacy Profile. (Note that the low-vision user is the only AR
user in this scenario; in scenarios with multiple users, the algorithm would act on all of their AR Sensing Profiles). The algorithm starts by
initializing the low-vision user’s negotiated sensing configuration to the most restrictive set of permissions, as defined by the bystander’s
Interpersonal Privacy Profile (Table 2, Column B).

(A) Sensing Functions to Loosen | (B) Current Negotiated Value | (C) Desired Value | (D) 1st Iteration Tradeoff Scores
Spatial Mapping (Capture) Precaptured Live 0.0953*

Speech Recognition (Capture) None Live 0

People Detection (Capture) None Live 0

Gesture Recognition (Computation) | None None 0

Speech Recognition (Computation) | None Local 0.0508

People Detection (Computation) None Local 0.0953

Gesture Recognition (Storage) None None 0

Table 2: Privacy-First Algorithm’s First Iteration. (*) indicates the best Permission-Privacy Satisfaction tradeoff score.

Next, we obtain a list of possible sensing functions to loosen (Table 2A). This includes all permissions that the bystander’s Interpersonal
Privacy Profile requests restrictions upon. The algorithm iterates through these sensing functions and first computes the change in both
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users’ Permission and Privacy Satisfaction Scores if we were to loosen this function. If no user’s Privacy Satisfaction threshold would be
violated, we calculate a tradeoff score (Table 2D), defined as (max HA—E‘}',[). In other words, the highest tradeoff score achieves the greatest
gain in Permission Satisfaction while minimizing loss in Privacy Satisfaction.

In this case, loosening the negotiated value for Spatial Mapping Capture (from Precaptured to Live) produced the best tradeoff score
(indicated by * in Column D), as did loosening People Detection Computation later in the loop. Four sensing functions achieved a tradeoff
score of 0. In the case of Speech Recognition Capture and People Detection Capture, this is because granting one level of access higher from
None would still not achieve the desired value of Live. In the case of Gesture Recognition (Computation and Storage), the low-vision user
does not require access to these capabilities, so there would be no Permission Satisfaction gain.

At this point, the algorithm chooses Spatial Mapping Capture as the best sensing function to loosen, changing its value from Precaptured
to Live.

Second Iteration of Privacy-First Optimization Algorithm. The algorithm follows the same procedure as the first iteration to evaluate
tradeoffs with loosening each sensing function (summarized in Table 3). The function we loosened in the first iteration, Spatial Mapping
Capture, already meets the low-vision user’s desired value. Of the remaining sensing functions, only Speech Recognition Computation
is viable to loosen. This is because loosening the other permissions would either not raise the low-vision user’s Permission Satisfaction
Score or would lower the bystander’s Privacy Satisfaction Score beyond their threshold (P; = 0.9).

(A) Sensing Functions to Loosen | (B) Current Value | (C) Desired Value | (D) 1st Iteration Tradeoff Scores

Spatial Mapping (Capture) Live Live already at desired value

Speech Recognition (Capture) None Live 0

People Detection (Capture) None Live 0

Gesture Recognition (Computation) | None None 0

Speech Recognition (Computation) | None Local 0.0508"

People Detection (Computation) None Local loosening would violate bystander’s Privacy threshold
Gesture Recognition (Storage) None None 0

Table 3: Privacy-First Algorithm’s Second Iteration. (*) indicates the best Permission-Privacy Satisfaction tradeoff score.

As it is not possible to loosen any other sensing functions and achieve a non-zero tradeoff score, the algorithm loosens Speech Recognition
Computation from None to Local and returns. We note that for simplicity in this example, we calculate the Permission Satisfaction Score as a
binary value per sensing function: 1 if the current value equals the desired value; 0 otherwise (Eqn. 1). With a less stringent calculation for
Permission Satisfaction Score that takes into account how “close” each sensing function’s current value is to the desired value (0 < S;; < 1),
the algorithm would try adjusting other sensing functions that need to be loosened multiple times to meet the desired value (i.e., Speech
Recognition Capture and People Detection Capture).
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